
MetaRule 1
ID: 772-BSI | Version: 3 | Date: 5/16/08 2:39:26 PM

MetaRule
Buffer Management

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-03-29

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 13134 bytes

Attack Category • Malicious Input

• Denial of Service

Vulnerability Category • Buffer Management

• Buffer Overflow

• No Null Termination

• Privilege escalation problem

• Multibyte Character

Software Context • String Management

Location

Description Many functions are susceptible to buffer
management and bounds-checking errors.

There are many generic types of errors that can apply
to usage of a wide variety of functions.
These include:

* using a function that does not permit one to specify
the size of a buffer to prevent overflows
* mis-specifying the size of a buffer or the amount of
data to be written. Off-by-one errors are common.
* failing to plan for correct behavior when input is
larger than expected
* failing to allow space for a terminating null
character
* failing to ensure that a terminating null character
is present (many standard functions consistently
experience this failure)
* specifying the size of a buffer or the amount of
data to be transferred using incorrect units. This is
particularly a problem with multibyte strings. On the
Windows platform, these functions tend to include
a "W" in the name. See the rule "MULTIBYTE" for
more information.
* assuming the wrong semantics for a parameter that
controls data transfer and prevents buffer overflows.
Because various functions use the buffer size, buffer
size minus one, the remaining space in the buffer,

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

MetaRule 2
ID: 772-BSI | Version: 3 | Date: 5/16/08 2:39:26 PM

etc., it is important to understand the bounding
semantics for each function.

Note that while some functions such as strcpy() are
intrinsically dangerous, even the "safe" functions
like strncpy() are still susceptible to subtle errors if
bounds checks are not done properly.

APIs Function Name Comments

_mbsnbcat

_mbsnbcpy

_mbsncpy

_tcsncat

_tcsncpy

_tcsxfrm

bcopy bytes, not strings

CopyMemory

fgets

lstrcpynW

memcpy bytes, not strings

sprintf

snprintf fmt: 2; src: 3 variable;
good use of copying,
concat,

StrCatBuff uses BuffSize, not "max
chars to append"

StrCatBuffA uses BuffSize, not "max
chars to append"

StrCatBuffW uses BuffSize, not "max
chars to append"

StrCatN

StrCatNA

StrCatNW

strccat Solaris, substitute
escape chars for binary
value

MetaRule 3
ID: 772-BSI | Version: 3 | Date: 5/16/08 2:39:26 PM

strcpy

strccpy Solaris, substitute
escape chars for binary
value

StrCpyN "StrCpy" routines are
from shell, Shlwapi.dll

StrCpyNA

StrCpyNW

StrFormatByteSize

StrFormatByteSize64

StrFormatByteSize64A

StrFormatByteSize64W

StrFormatByteSizeA

StrFormatByteSizeW

StrFormatKBSize

StrFormatKBSizeA

StrFormatKBSizeW

StrFromTimeInterval

StrFromTimeIntervalA

StrFromTimeIntervalW

strncat have to keep track of
size as it builds up

StrNCat

strncpy make sure null
terminated

strxfrm

vsnprintf fmt: 2; src: 3 variable;

wcsncat

wcsxfrm

wnsprintf fmt: 2; src: 3 variable;

wnsprintfA

MetaRule 4
ID: 772-BSI | Version: 3 | Date: 5/16/08 2:39:26 PM

wnsprintfW

wvnsprintf fmt: 2; src: 3 variable;

wvnsprintfA

wvnsprintfW

Method of Attack Bounds checking, null termination and off-by-one
errors create opportunities for buffer overflow or
denial of service attacks.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Always Search for
the functions
identified in
this rule and
ensure that
correct bounds
checking is
done. Be aware
that other
functions may
have similar
issues. Pay
particular
attention to
whether it is
possible to
get an off-by-
one error and
that the strings
are properly
terminated with
NULL when
done.

Effective to
the degree that
consistent care
is used.

Always Identifying or
writing safer
versions of
utility functions
that incorporate
checks and then
using these
safer functions
consistently
improves
safety.

Effective to
the degree that
consistent care
is used.

Always Always use
#define or
other const for

Effective to
the degree that

MetaRule 5
ID: 772-BSI | Version: 3 | Date: 5/16/08 2:39:26 PM

declaration of
size.

consistent care
is used.

Always Always use
SAME #define
or const when
checking bound
sizes.

Effective to
the degree that
consistent care
is used.

Always For strings, use
(buffer size)
- 1 to ensure
space to put
terminating \0.

Effective to
the degree that
consistent care
is used.

Always Always write
a \0 to upper
bound of buffer
after processing
string.

Effective to
the degree that
consistent care
is used.

Always Do a bounds
check to verify
that the buffer
you are passing
in is as big as
you say and that
it is big enough
to hold the new
contents. Verify
that the returned
buffer is null
terminated.

Effective to
the degree that
consistent care
is used.

Always Take particular
care when
working with
multibyte
strings.

Effective to
the degree that
consistent care
is used.

Signature Details Any code with the identified functions.

Examples of Incorrect Code char str1[10];
char str2[]="abcdefghijklmn";
strcpy(str1,str2);

Examples of Corrected Code /* If truncation is ok, the
following works. */

const int BUFFER_SIZE = 10;
char str1[BUFFER_SIZE];
char str2[]="abcdefghijklmn";
/* in this case we know str1 isn't null, but in general
we should check to confirm that. */

/* strncpy() always works, but
on systems such as Windows or BSD
Unix, there are better choices. */

MetaRule 6
ID: 772-BSI | Version: 3 | Date: 5/16/08 2:39:26 PM

strncpy(str1,str2,
BUFFER_SIZE-1); /* limit number of
characters to be copied */
str1[BUFFER_SIZE-1] = '\0'; /
* guarantee result will be null
terminated */

Source Reference • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X

Recommended Resource

Discriminant Set Operating Systems • Any

• Windows

• UNIX

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

